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A numerical procedure is outlined which treats the coupled equations involved in 
electron-ion scattering, as well as electron-atom scattering, within the close-coupling 
formalism. The coupled integrodifferential equations of the scattering problem are solved 
by a two-step process. First, the equations are separated into auxiliary equations which 
are then solved numerically in the interior region from zero out to some transformation 
point rt . Any convenient numerical technique can be used to integrate the equations; 
in this work, a noniterative integral equation method is used. Next, the long-range 
potential terms are taken into account at rt via an open-channel projection technique. 
This technique simply projects the reactance matrix to its asymptotic value. The numeric- 
al procedure is then tested by applying it to *He+ scattering. Finally, two specific 
disadvantages of the procedure related to the treatment of closed channels are discussed 
in detail. 

I. INTR~DLJOTION 

In previous work by Smith and Henry [l] and Rountree et al. [2], a numerical 
procedure using noniterative integral equation theory is discussed and applied to 
low-energy e- - H and e--O scattering within the close-coupling formalism. In 
previous work by Koti et al. [3-4], a similar numerical procedure using Numerov’s 
method is discussed and applied to e--Na and e--Li scattering within the non- 
exchange close-coupling formalism. Both methods integrate a set of coupled 
equations out to a transformation point rt , where the reactance matrix is projected 
to its asymptotic value [5]. Also, note that Karule (61 has extended the Percival- 
Marriott method [7] for use in electron-atom collision problems where the ex- 
change terms are also treated using auxiliary equations, but another numerical 
technique is used to integrate the coupled equations. 

Here a numerical procedure is outlined which treats the coupled equations 
involved in electron-ion, as well as electron-atom, scattering within the close- 
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coupling formalism. Since an integral equation method is to be used in solving the 
coupled equations in the interior region, it is necessary to extend it to the ion case. 
The projection technique is also extended to the ion case by simply evaluating a 
more general class of integrals that results when using Coulomb waves [8]. 

The numerical procedure is briefly presented in Section II; application of the 
procedure to e-He+ scattering is given in Section III. In Section IV, two specific 
disadvantages of the numerical procedure are discussed in detail. A few concluding 
remarks are given in Section V. 

II. OUTLINE OF THE NUMERICAL PROCEDURE 

Since Coulomb waves rather than plane waves are used in the asymptotic 
boundary conditions imposed on the scattered electron in electron-ion scattering, 
the numerical procedure used to solved the coupled equations must account 
for these boundary conditions. The coupled equations can be integrated in 
the interior region (from zero out to the transformation point TJ using any 
desired numerical technique such as that provided by integral equation theory or 
the Numerov method [7]. However, at rt any long-range potential terms must 
be taken into account in obtaining the reactance matrix. An open-channel 
projection technique [l, 31 is used which approximates the reactance matrix at 
infinity using its value at rt . Other techniques are reviewed by Burke and 
Seaton [7], such as those which involve linearly independent solutions to the 
coupled equations in the asymptotic region (i.e., the region where r > It). 

In integral equation theory the boundary conditions are contained in the integral 
equations through the use of Green’s functions. In the asymptotic region, it is clear 
that Green’s functions which behave asymptotically as Coulomb waves, rather 
than plane waves, must be used. In Section A, the method of outward integration is 
outlined where Coulomb Green’s functions are used. However, in Section B, an 
alternative procedure is discussed which uses a combination of free-space and 
Coulomb Green’s functions. In Section C, an open-channel projection procedure 
is presented for use in the ion case, as well as the neutral case. 

A. Coulomb Green’s Functions 

To illustrate the alterations that are necessary in using integral equation theory, 
we need only retain the direct potential in the coupled differential equations [7]. 
The resulting equations are 

[ 
d2 - - 
dr2 

‘ic’irz *) + F + /Q] F&r) = ; Vtn(r) F&r), (1) 
?L=l 
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where N is the total number of channels, Zi and ki are the angular momentum and 
wave number for channel i, V is the direct-potential matrix, and z is the residual 
charge of the ion. Next, F is a square matrix, which represents the reduced radial 
part of the scattered-electron wave function. These equations have a solution with 
asymptotic forms 

-Fik) ,‘=“m 
I 
k;1’2[sin(Ei + CJ~) ai + cos(& + UJ RJ, i open, 

dije-Kdr(2Kir)Z’Ki + &(r), 
(2) 

i closed, 

with 

6i = kir - li(n/2) -I- (z/K~) ln(2Ks), 

ui = arg r(lj + 1 - iz/Ki), 

Ki = 1 ki 1 . 

(3) 

Note that R is the familiar open-channel reactance matrix and d is a matrix asso- 
ciated with the closed channels. The matrix 4 is included in Eq. (2) to emphasize 
the possible existence of long-range terms that couple with the open channels to 
give rise to polarization effects [9]. 

The set of coupled differential equations in Eq. (1) can be straightforwardly cast 
into a set of coupled integral equations [ 1, IO]. If the Coulomb term (2z/r) in Eq. (1) 
is retained in defining the Green’s functions, we obtain the equation 

da -- 
dr2 

zi(zirt ‘) + G + k,z] Gp’(kg) = 0, a = 1,2, (4) 

where Gj”‘(ktr) are referred to as Coulomb Green’s functions. The associated 
boundary conditions are 

Gp)(k,r) ,ym 

I 

k;1’2 sin&. + ui), i open, 

(2~)~~‘~ e+K~r(2Kir)-Z’Kf, i closed, 

G?‘(k~r) ,ya 
I 

k,lf2 cos(<i + pi), i open, 

--(~JQ-~‘~ e-K~r(2Kir)+Z’K*, i closed, 

(5) 
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where (6 , ui , and Ki are defined in Eq. (3). The set of unnormalized integral 
equations can now be written as 

I/!J~~(T) = Gi(l)(kir) H$‘(r) - Gp)(kir) f@(r), 

H:;‘(r) = 6ij - IO’ Gp’(kiX) [C Vi,(X) #,(X)1 dx, 
n 

f@(r) = - jo’ Gp’(kix) [C Vi,(X) #We] dxy 
n 

where the normalized solution F,,(r) is obtained from the unnormalized solution 
$ij(r) by a simple matrix multiplication. 

Let us briefly consider the open channel Green’s functions. From Abramowitz 
and Stegun [l 11, the Green’s functions can be expressed in terms of the regular 
solution Ft and the irregular solution GL , namely, 

(7) 

Note that the Wronskian relation W[Gjl’, Gi2’] = + 1 was used in obtaining Eq. (7). 
The numerical generation of these functions is straightforward [12]. 

Let us next consider the closed channel Green’s functions. From Abramowitz 
and Stegun [ll], note that there are several solutions to the closed-channel version 
of Eq. (4), namely, 

where y = 2Kr, ~1 = I+ 4, and c11 = z/k. We can use the familiar Whittaker 
solutions M,,,(y) and IV&y) as long as r(+ + p - a) is well defined. At the 
critical values 

i+p--a=-n, n = 0, 1, 2..., (9) 

it is well known that M,,,(y) and W,,,(y) are linearly dependent functions; 
moreover, these critical values correspond to the familiar bound states in a 
Coulomb field with z > 0. It seems reasonable that the Whittaker solutions can be 
used successfully as long as K2 is not too close to the critical values. In an effort to 
avoid any numerical difficulty that could arise when ~~ is near the critical values, an 
alternative approach that uses free-space Green’s functions in the interior region 
is suggested in Section B. As a result, we can avoid using closed-channel Coulomb 
functions in the interior region. 
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Once all the necessary Green’s functions are obtained, we proceed as follows. 
Integrate Eq. (6) from zero out to rt in the usual manner. After forcing closed- 
channel boundary conditions (an approximation that is discussed in Section IV.A), 
we obtain #(rJ and H(“)(r,) for the open channels only. We define the open-channel 
reactance matrix at rt as R(r,) = fP(r,) . [H(2)(rt)]-1. Using the open-channel 
projection procedure to be discussed in Section C, we project R(r,) to its asymptotic 
value R = R(m). 

B. Coulomb and Free-Space Green’s Functions 

It is apparent that Coulomb Green’s functions are necessary at the transforma- 
tion point rt . However, while integrating Eq. (6) from zero out to rt , it is permis- 
sible to use free-space functions. In this manner we avoid using closed-channel 
Coulomb functions in the interior region. However, at rt the amplitudes Hp’(rJ, 
which are relative to free-space functions, must be transformed into the amplitudes 
Hr’(r,), which are relative to Coulomb functions. As a result, the projection of 
R(r,) can proceed as indicated at the end of Section A. 

Suppose we have integrated Eq. (6) out to rt where we obtain the open-channel 
matrices 

$,(r) = G?‘(r) HP’(r) - G?‘(r) HP’(r), 

t,&‘(r) = G;“‘(r) HP’(r) - G;“‘(r) HP’(r), 
(10) 

after the closed channel boundary conditions are forced [l]. In terms of Coulomb 
functions, we have Eq. (10) except the subscriptfis replaced by the subscript c. By 
matching the two solutions at rt , we have 

h(rJ = Mr3, 

#f’(rt) = rClc’(rt), 
(11) 

which yields 

having used the Wronskian relation w[GLl’, Gi2’] = +I. All that remains in 
obtaining Hr’(r,) from, Eq. (12) is to specify GF’(r,) and GL’*‘(r,). One way by 
which we can obtain these open-channel Coulomb Green’s functions at rt is to 
evaluate their respective asymptotic expansions given by Abramowitz and Stegun 
[I I]. However, care must be taken to choose an adequate value of rt to ensure 
proper convergence of the asymptotic expansions. To guarantee at least five-figure 
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TABLE I 

The Specification of p for Various 7 and 1 = 0 Which Ensures 
at Least 5-Figure Accuracy in G, and G, 

&l.O 10 

15.0 15 

rtlO.0 23 
zkl5.0 33 
+20.0 40 

accuracy in GF’ and GLta), Table I specifies an adequate value of p = kr, for various 
r] = z/k and I = 0 [13]. F or rg h’ h er values of 1, it is sufficient to use the value 
pI = p. + a. Having obtained Hp’(r3, we calculate the reactance matrix R using 
the projection procedure to be discussed in the next section. 

C. Projection Procedure 

The objective of this procedure is to take the reactance matrix R(r,) and project 
it to its asymptotic value R. The procedure corrects for any long-range potential 
terms which are neglected in calculating R(r,). 

As discussed by Smith and Henry [l], a projection equation for the amplitudes 
can be obtained, namely, 

c(1.2) H%t) I[ 1 , Z + C(2s2) H$‘(r,) 
(13) 

where C(O*B) are square matrices which are proportional to the integrals 

D$,‘) = Irn Gi”‘(k,x) Gl”‘(kix) V,,(x) dx. 
rt 

(14) 

As discussed in KorfI et al. [3], an alternative projection procedure is presented, 
which can be shown to be equivalent to Eq. (13) to first order in D&“. Whichever 
procedure is used, both must calculate the integral DjT*“’ given in Eq. (14). 

Let us now consider the manner in which the integral Di;*” is evaluated. If we 
denote the asymptotic form of the direct potential as 

Vi,(x) = C a$)/x”+l 
a=1 

(15) 
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and express the Green’s functions in terms of their asymptotic expansions [ 1 l] 

&‘(k,r) = k,1’2 f {Sk) sint& + 4 + CL? cost& + u,)}, 
W&=1 

then we can express Dj;*E’ in terms of the basic integral 

(16) 

Ltk, N, ‘I, rt) = irr eikr $, 
where 

k = f(ki f k,), 

?1 = zktqi f %L 

N = 2, 3, 4 ,..., 

(18) 

and vi = -z/k, . When evaluating D$*B’ with asymptotic expansions for the open- 
channel Green’s functions, care must be taken to ensure the convergence of the 
integrated sum to within a specified accuracy. The values of p = kr, given in 
Table I are sufficient to guarantee five significant figures. 

To evaluate the basic integral, we let 

with 

L(k, N, 7, rt) = rtyx-yF(u, x), 09) 

v=l-N-iir], 

x = -ikrt , 

F(v, x) = jam tY-le-$ dt. 
(20) 

According to Luke [14], we have 

Qv, x) = x”-le+F(l - v, 0 x) 2 3 (21) 

where F(1 - v, 0, x) can be evaluated using continued fractions. From Eqs. (19) 
and (21) we obtain the equation 

L(k, N, 77, rt) = r;x-le-“F(l - v, 0, x). (22) 

The convergence of the continued fraction expansion is governed by the parameter 
y = kr, . For y < y0 = 2, it is found that the convergence is not as rapid as desired. 
Hence, let us proceed as follows when y < y0 . We take 

W, N ‘I, rJ = W, N, rl, ro> + J-W, N rl, ro, r3, (23) 
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s 

go 
= kN-l+in 

ZI 
-&, du. 

Using eiU = ~~!, (iu)r/Z! , we obtain the series expansions 

M(7) # 0) = kN-l+ ’ f iz 
z=o I! (Z + 1 - N - iv) 

[$l-N-in _ ,,Z+l-N-in], 

M(q = 0) = kN-l go /, (l +‘; _ N) [Y?-~ - Y’+‘-~] 

Z#N-1 

+ (j&! [In y. - ln ~1. 

(24) 

In summary, we evaluate the basic integral directly from Eq. (22) using continued 
fractions provided y = krt > y. = 2. For y < y. , we use Eq. (23) 
where L(k, N, 7, ro) is evaluated using continued fractions and M(k, N, r], r, , rt) is 
evaluated using the series expansions given in Eq. (25). 

Finally, in evaluating all the necessary basic integrals required to specify the 
projection matrix in Eq. (13), we use recurrence relations on L(k, N, 7, rJ. For 
instance, after using integration by parts, we obtain 

ikr, 1-N-h 

L(k, N, I,I, rJ = e rt 
N-l+iT + (N _“lk+ in) L(k N- 1, % rd (26) 

for upward recurrence and 

Uk N, 17, r3 = - 

eikrtr-N-in 

ii 
+ (N + id 

ik W&N+ Lrl,rt) (27) 

for downward recurrence. We start at N = No and evaluate L(k, No , 7, rJ as 
outlined in the preceding paragraph. From No we recur downward to N = 2 
and upward to N = NmaX (for example, Nmax = 100). If we take (numerically 
established) 

M 3 2, 
M < 2, (28) 
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where INT(x) chooses the closest integer to x, the recurrence procedure can proceed 
without much significant figure loss. 

In summary, we see that continued fractions, series expansions, and recurrence 
relations combine to yield a complete specification of the basic integral used in 
expressing the projection matrix in Eq. (13). Moreover, note two important facts. 
First, this procedure for evaluating the projection matrix for the ion case (z # 0) 
is also valid for the atom case (z = 0). Second, this procedure is designed to work 
even for high angular momentum (for example, I = 50). Refer to Appendix I for 
the evaluation of gi . 

III. APPLICATION TO e--He+ SCATTERING 

In application of the numerical procedure via integral equation theory, let us 
consider the Yi’ partial wave for the e- + He+ scattering problem within the close- 
coupling formalism. We can solve the equations given by Percival and Seaton [15], 
where the continuum functions are not orthogonalized to the He+ atomic orbitals. 
Alternatively, we can constrain the continuum functions to be orthogonal to the 
atomic orbitals and variationally include the necessary correlation functions to 
completely account for the constraints [7]. The two procedures are found to yield 
the same eigenphases to within 0.2 % for energies from k2 = 2.0 Ry to 5.0 Ry 
using a Is--2s-2p expansion. Consequently, only the results obtained using the 
Percival-Seaton equations will be quoted. 

Here is a brief outline of this section. First, the open-channel projection 
procedure is tested for increasing values of the transformation point rt . Second, 
the %’ partial-wave contribution to the cross-sections Q(ls-ls), Q(ls-2s), and 
Q(ls-2~7) is studied as more hydrogenic states are included in the close-coupling 

TABLE II 

The Unprojected and Projected Eigenphases for kZ = 3.2 and 5.0 at Two 
Values of rt Using a 3-State Expansion 

rt A B C D 

90.81 0.152(+1) 0.155(+1) 0.112(+1) 0.112(+1) 

0.316 0.320 0.299 0.298 

-0.709 -0.741 -0.146(-l) -0.198(-l) 

151.61 0.153(+1) 0.155(+1) 0.112(+1) 0.112(+1) 

0.317 0.319 0.298 0.298 

-0.722 -0.741 -0.166(-l) -0.198(-l) 

581/18/z-7 
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expansion. Third, a specific example is given that should help motivate the use of 
free-space Green’s function in the interior region. 

First, let us consider the use of the open-channel projection procedure when 
using a ls-2s-2p expansion. In Table II, the eigenphases at the transformation 
points rt = 90.81 and 151.61 are given for the incident electron energies k2 = 3.2 
and 5.0. Columns A and B contain the unprojected and projected eigenphases for 
k2 = 3.2. Columns C and D similarly contain eigenphases for k2 = 5.0. From an 
observation of Table II, we see that the unprojected results do progress toward the 
projected results as rt increases. We can also make the significant observation that 
the dipole potential which couples the degenerate channels, does not affect the 
projected results as much as in the e--H case [I]. In the hydrogen case, for example, 
a value of rt as large as 500 was required to converge the projected cross-section to 
within 0.1 %, at an energy just above the n = 2 threshold. It would appear that the 
degenerate dipole coupling does not dominate at large distances in e--He+ scat- 
tering. This behavior can easily be attributed to the idea that the effect of the 
degenerate dipole coupling is being measured against a dominating Coulomb term. 

TABLE III 

Cross-Sections in units of muoa (with phase shifts in brackets) for the 3-state, 6-state, and I-state 
calculations. Rows (a-c) give the Q(ls-ls), Q(ls-2s), and Q(~P2~) cross-sections, respectively, 

for the IS partial wave 

kVW Q(3-state) Q(6-state) Q(8-state) QW’) 

3.20 

3.24 

5.00 

; SzJ -I%] jsi[ ,fzJ] zz[ ,iJ] 3$-F;; 

(a) .158(-l) .163(-l) .166-l) N.A. 
(b) .306(-2) .288(-2) .273(-2) 
(c) .421(-2) .380(-2) .37q-2) 

Let us next consider the 3-state (Is-2s~2p), the 6-state (+3s-3p-3d) and the 
g-state (+4wlp) results at k2 = 3.2, 3.24, and 5.0. We compare the excitation 
cross sections with the correlation (BT) results of Burke and Taylor [16] where 
applicable. The BT excitation cross-sections are obtained using a 3-state expansion 
plus explicit two-electron correlation terms. Next we note that the 3-state results 
agree to within 0.2 % with the tabulated 3-state results of Burke et al. [17]. The 
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6-state results are found to agree to at least within 1.0 % with the graphical 6-state 

results of Ormonde et al. [18]. Table III gives these cross-sections in units of ~a,,~, 
where Rows (a-c) contain the Q(ls-ls), Q(ls-2s) and Q(ls-2~) cross-sections, 
respectively. First, note that as the number of states (n) increases, the elastic cross- 
section increases while the inelastic cross-sections decrease toward the BT excitation 
results. Also, at the energy k2 = 5.0. the changes in the cross-sections become 
smaller as n increases. In any case, this trend toward the BT results indicates that 
the addition of more atomic He+ states into the close-coupling expansion will lead 
to rather slow convergence. However, this conclusion is not strictly correct. Since 
the cross-sections don’t necessarily have to change monotonically as more terms 
are included in the total wave function, it is not apparent that the BT excitation 
cross-sections are “better.” It would have been more appropriate to compare the 
individual phase shifts because of the bounds they satisfy below the IZ = 3 thres- 
hold. With this thought in mind, we note that the change in the cross-section 
Q(n-state) from it = 6 to n = 8 is small. Perhaps, if more atomic He+ states are 
included in the close-coupling expansion, the convergence may not be too slow. 

Finally, consider a specific example that should help motivate the use of free- 
space Green’s functions during the integration of the coupled equation in the 
interior region (from zero out to rt). Recall that there exists bound states for a 
Coulomb field with z > 0. They occur for He+ (z = + 1) at the critical energies 
(refer to Eq. (9)) 

2 Qrn = [Ii -i- ml-” RY, m = 1, 2, 3 ,... . (29) 

In particular, there are an infinite number of Coulomb bound states. Therefore, if 
we attempted to map the series of lS resonances that exist between the n = 2 and 

TABLE IV 

A study of the first five ‘S resonance positions just below 
the n = 3 threshold. Column (a) contains the 

resonance positions calculated by Burke and Taylor [16]. 
Column (b) contains the critical values taken relative 

to the n = 3 threshold 

a b 

1. 3.294 3.31 
2. 3.368 - 

3. 3.440 3.44 
4. 3.419 3.49 
5. 3.489 3.52 
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n = 3 thresholds of He+, the use of closed-channel Coulomb Green’s could be 
numerically hazardous, especially if the resonance positions are near the critical 
energies. Let us then compare the positions of the critical energies taken relative 
to the IZ = 3 threshold with the positions of the resonances. From quantum defect 
theory [19], recall that the Coulomb term is the principle factor in supporting some 
of these resonances. Therefore, we should expect the critical energies to be close to 
some of the resonance positions. In Table IV, column (a), observe the theoretical 
energy positions of the first five lS resonances just below the n = 3 threshold given 
by Burke and Taylor [16]. By subtracting the critical energies l/4, l/9, l/16, and 
l/25 from the n = 3 threshold energy of 3.556, the results in column (b) 
are obtained. Note the unsurprising result that some of the resonance positions lie 
quite close to the critical energies. 

In order to test the use of free-space Green’s functions for energies near a 
resonance, let us consider calculating the position and width of the first IS resonance 
just below the II = 3 threshold. First, the reactance matrix R is diagonalized by an 
orthogonal transformation U. The phase shifts Si are then defined by 

[UTRUlij = 6ij tan & . 

Next, the sum of the phase shifts 6(P) is fitted to the resonance formulals 

6(k2) = a + bk2 + tan-l [+J’/(& - k*)], 

where a and b are simple constants, r and ET are the width and position, 
respectively, of the first resonance, and the effects of other nearby resonances are 
neglected. After having calculated S(k2) in the 6-state approximation for a series of 
energies on each side of the resonance position, application of the resonance 
formula yields r = .636(-2) and E, = 3.293. In comparison with the B-state 
results of Ormonde et al. [18], they obtain r = .632(-2) and E, = 3.293, which 
are in good agreement with the present results. 

IV. DISADVANTAGES OF THE NIEM 

In this section, let us discuss two specific disadvantages of the numerical proce- 
dure presented here. Both disadvantages are related to the treatment of the closed 
channel components of the unnormalized solution #(I) given in Eq. (6). The first 
problem can occur when the closed-channel boundary conditions are forced with 
a premature drop of the closed channels. The second problem can occur if some of 
the closed-channel Green’s functions grow (exponentially) too rapidly for 
increasing r. 
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A. First Disadvantage 

The first problem associated with the closed channels can occur even when the 
closed channel Green’s functions do not grow rapidly. We integrate #(r) of Eq. (6) 
from zero out to a point rc where the closed channels are dropped after setting 
#Jr) (i.e., i closed and j open) to zero with the use of an appropriate matrix 
multiplication [l]. However, as indicated in the boundary conditions in Eq. (2), 
there can exist back-coupling to the open channels which give rise to long-range 
polarization effects. 

Consider the illustrative example of e--O scattering for the 4P partial wave where 
only the ground state s-wave channel is open (i.e., no d-wave) and any excited 
state channels are closed [2]. When V&r) -,.-a a,@ (wherej # l), there exists 
dipole coupling from the closed channels to the open channel in the form of the 
usual dipole polarization term a?/r4. It is apparent that dropping closed channels 
before the polarization term is negligible could lead to a substantial error, especially 
at very low energy. However, it is quite possible that we cannot integrate the closed 
channels out far enough because of the growth of the solution. 

TABLE V 

For the *P partial wave of e-0 scattering, we obtain the corrected (Q) and uncorrected 
(Qu) cross-sections in units of ~a*,, with phase shifts in parentheses. Using the corrected 
phase shifts, we calculate fi = k cot(T); we fit /I with the modified Blatt-Jackson formula 

to obtain y  

3.q-1) 
2.0(-l) 
1.0(-l) 
1.q-2) 

l.O(-3) 
l.O(-4) 
l.O(-5) 
l.O(-6) 

3.92(--.726) 
4.13(-591) 
4.33(-.415) 
4.47(-.130) 
4.48(-.0410) 

4.48(-.0130) 
4.48(--.00410) 
4.48(-.00130) 

3.90(-.724) - - 
4.11(--.588) - - 
4.30(-.413) - - 
3.63(-.117) - - 

2.57(-.0311) -1.02 -0.98 
2.11(--.00890) -1.12 -1.12 
1.95(--00271) -1.17 -1.17 
1.90(-.000844) -1.18 -1.18 

To illustrate this particular problem further, consider the effect of the polarization 
term VPol = -5.19/r4 on the usual static exchange results for the 4P partial wave 
of e--O scattering. With only the ground state s-wave channel present, we integrate 
#(r) from zero out to rc = 10.56. At this point, we introduce the polarization 
term into the direct potential. Carrying the integration out to the point rt = 50.373, 
we project the reactance matrix to its asymptotic value. We label the cross-section 
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Qc . For a comparison, we can neglect the polarization term VPol to obtain the 
cross-section QU . From Table I’, we see that as k2 decreases, the polarization term 
does become more important, as expected. However, for k2 3 0.1 we see that the 
polarization term has little effect, indicating that shorter-ranged potential terms 
may be more important. In summary, we see that neglect of the polarization 
potential at rc can introduce serious error into the final results, especially at very 
low energy. 

Next let us check the low-energy behavior of these results against the modified 
Blatt-Jackson formula as given by O’Malley, Spruch, and Rosenberg [20]. For 
I = 0, the formula is 

k cot(v) = - d + 5 k + 2 k2 In ($) + ***, 

where “u” is the scattering length and (Y = 5.19 is the dipole polarizability. 
For the last four energies in Table V, the quantities /3i = k( cot (qi) are calculated 
using the corrected phase shifts q, . The values & are then fitted with the r.h.s. of 
Eq. (30) to obtain the results yi . As we can see in Table V, the fitted results ‘yi agree 
well with the calculated results /3i especially at very low energy. Note that a, = 0.838 
for the corrected results as compared with a, = 1.30 for the uncorrected results. 
This indicates that the scattering length is dependent on the dipole polarizability 01, 
as expected [20]. 

In order to avoid this particular problem, the closed channels must be handled 
more appropriately. A familiar technique [6,7] is to obtain linearly independent 
asymptotic solutions of the coupled equations at rt . These solutions are integrated 
inward to an intermediate point r,, , where the inward and outward solutions are 
appropriately matched. In this manner, the effect of the closed channels in the 
asymptotic region can be retained in any given calculation. Moreover, the closed- 
channel part of F(r) is matched to its correct asymptotic form as given in Eq. (2). 
When using an asymptotic expansion, care must be taken to use a value of rt that 
will ensure its convergence. For example, it is well known [7] that when the channel 
energy separations become too small, poor convergence results for the expansion 
suggested by Burke and Schey [21]. In an attempt to avoid such convergence 
problems, it may be possible to obtain the asymptotic solutions via a projection 
technique similar to the open-channel technique discussed in Section C, but 
appropriately modified to handle closed channels [22]. 

B. Second Disadvantage 

Let us now consider the second problem. Note that an inward and outward 
integration technique is intended to avoid the numerical difficulties that result 
from the growth of solutions originating from any closed channeIs and exchange 
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terms [7]. However, we shall see that the inward and outward solutions cannot 
always be matched at an interior point r,,, , especially if rt and $ are large (for 
example, rt = 35.0 and Q = 5.0 Ry.) To illustrate this point clearly, we consider 
the coupled equations given in Eq. (1) with z = 0 for numerical simplicity. First, 
an integral equation theory is used to study the origin of the difficulty. Second, a 
numerical example is provided which confirms the conclusions of the study. 

The normalized solution Fij(r) of Eq. (1) can be written as 

F,,(r) = d&G~)(k,r) + Gp)&r) 1’ Gi’l’(k,x) S&x) dx 

+ Gi(l)(kg) [C” - L’ G&x) S&x) dx], 

where 

(30 

(32) 

A,= ; I 
i open, 

9 i closed. 

Note that the unnormalized solution &j(r) of Eq. (6) results when we omit the 
constant C,, . As an result, the solution contains closed-channel components that 
grow exponentially. However, at r = r,,, this behavior is taken out by matching to 
an inward solution. Therefore, we are effectively subtracting out any exponential 
growth as in the integral equation for F&r). For example, with i closed the r.h.s. 
of Eq. (3 1) becomes 

Fdr) ,ya d?kr) 4 + h(r), (33) 

where d and I# are matrices given in Eq. (2). Assuming dipole coupling between the 
open and closed channels, the bracketed term in Eq. (31) can be shown to have the 
asymptotic form [9] 

C’ij - Ir Gp)(ktx) &(x) dx = Jm Gp’(ksx) S,~(X) dx rym e-K6T&‘(r), (34) 
0 r 

where $(I) contributes to 4 in Eq. (33). We see that after some point riut, the 
subtraction becomes erroneous due to significant figure loss on a computer. 
Therefore, if we attempted matching for r, > rpt, we could not subtract out the 
exponential growth. In attempting to avoid this problem, we integrate inward to a 
match point r, < rpt. 
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We can also write the normalized solution &(r) as 

Fi3(r) = d&Gp)(kg) + Gp)(kir) srn G?)(kix) &j(x) dx 
T 

+ Gp)(kg) [Dij - Jr’” G?)(kix) S&x) dx], 

where 

Dij = l” Gl’)(kix) S,,(x) dx, 

ra = 
I 
a, i open, 
rt , i closed. 

(35) 

(36) 

If we neglect Dij , we obtain an unnormalized solution for use during the inward 
integration starting at r = rt . After defining the linearly independent solutions, we 
can use an asymptotic expansion [21] (or perhaps a general projection 
technique [22]) to obtain the initial values at rt which are needed to begin the 
inward integration of the solutions, As we integrate the unnormalized solutions 
inward, we see that the integral (for i closed) 

&(r) = 1” Gp’(k<x) c V&x) &f(x) dx (37) 

can become quite large, depending on the values of rt and K~ . As a result, this term 
will introduce a growth into the incoming solutions. At the match point r, , we 
subtract out this behavior by matching to the outward solution. From Eq. (35), the 
matching effectively performs the subtraction (for i closed) 

Di, - &3(r) ,‘=;, 0. 

Since both Daj and Iij can be quite large, we see that at some point rp, the subtrac- 
tion yields erroneous results due to significant figure loss on a computer. It is 
apparent that the matching cannot yield accurate results if rp > rrt in a given 
calculation. 

To confirm these observations numerically, and to obtain some idea of what to 
expect in similar calculations, consider a two-channel example problem. Let us 
solve Eq. (1) with I1 = 0, Z, = 1, k12 = k2 = 1 .O, kz2 = -K2, and z = 0. The 
direct potential is taken to be 

vdr> = V2,(r) = 0, 
V,,(r) = V,,(r) = -2(1 - e-T)4/r2, 
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which exhibits dipole coupling between the channels [7]. At a point rt , we obtain 
the initial values for three linearly independent solutions vis (where i = 1,2 and 
j3 = 1,2,3), using an expansion technique suggested by Burke and Schey [21]. We 
use Numerov’s method to integrate the three solutions inward from r = rt to 
r = r,,, . Next, we integrate two linearly independent solutions u&r) outward also 
using Numerov’s method. The initial values used to start the outward integration 
are obtained using the approximate solution 

uie(r) = &GP)(kg), (40) 

which is adequate for small values of r. At the match point r, , we take 

qt(r) = i u&r) b, , 
a=1 

F?(r) = i v&r) a, , 
B=l 

(41) 

where a, = 1.0 and a2 = R. Note that R is the single-channel reactance matrix. 
We match at r = r, by requiring 

Fyt(rm) = Fy(r,), 

F:““t(rm) = Ffn(rm). 
(42) 

For a given ~~ and rt , we shall examine the constants b, , b, , a, , a, for various 
match points r,,, . In Table VI, we tabulate the constants for ~~ = (I&-5.0), for 
rt = 25.0, and for the matching range r, = (5.0,9.0, 11.0, 15.0,20.0). We see that 
for K~ = 1.0, the single-channel reactance matrix R = a, is stable across the entire 
matching range. As ~~ increases, the constant R becomes less stable across the 
matching range. Moreover, observe that rpt decreases and rp increases as K2 

increases. As we expected, the outward integration cannot proceed beyond some 
point rpt and the inward integration cannot proceed beyond some point rp, in 
order to obtain an adequate value for the constant R. 

Next, let us examine the effect of increasing rt . From Eq. (35), we expect that the 
inward solution will experience more growth as rt increases. We will find this 
aspect to be true numerically as can be seen from the behavior of a, as rt increases. 
With an increase in the growth of the inward solution, we shall see that t-2 does 
become larger. 

Let us examine the results for rt = 30.0 and rt = 35.0 in Tables VII and VIII, 
respectively. First, note that the value of r, in does increase as rt increases. As a 
result, we see that no match is possible for ~~ = 5.0 and rt = 35.0. Next, even if 
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TABLE VI 

For various I? with rt = 25.0, the constants bl , b2, a,, a3 are examined for 
various match points r,,, 

WY) r m = 5.0 r, = 9.0 r, = 11.0 r, = 15.0 r, = 20.0 

1.0 

2.0 

3.0 

4.0 

5.0 

b, 
b, 
a2 
as 

b, 
b, 
a2 
a3 

b, 
bs 
a2 
a3 

b, 
h 
a2 
aa 

.995 

.193 

.490(-l) 

.116(+6) 

.998 

.904(-l) 

.364(-l) 

.121(+10) 

.999 

.553(-l) 

.291(-l) 

.161(+13) 

.100(+0 

.382(-l) 

.239(-l) 

.737(+15) 

.891 

.251(-l) 

.457 

.64q+17) 

.995 

.193 

.490(-l) 
.116(+6) 

.998 

.904(-l) 

.364(-l) 

.121(+10) 

.999 

.553(-l) 

.291(-l) 

.161(+13) 

.999 

.382(-l) 

.243(-l) 

.737(+15) 

.1oo(+u 

.282(-l) 

.208(-l) 

.170(+18) 

.995 

.193 

.490(- 1) 

.116(-t6) 

.998 

.904(-l) 

.364-l) 

.121(+10) 

.999 

.553(-l) 

.291(-l) 

.161(+13) 

.999 

.382(-l) 

.243(-l) 

.737(+15) 

.loo(+l) 

.282(-l) 

.208(-l) 

.17q+18) 

.995 

.193 

.490(-l) 

.116(+6) 

.998 

.904(-l) 

.364(-l) 

.121(+10) 

.999 

.553(--l) 

.290(-l) 

.161(+13) 

.997 

.381(-l) 

.259(-l) 

.738(+15) 

.102(+1) 

.288(-l) 

.466(-2) 

.172(+18) 

.995 

.193 

.490(-l) 

.222(+6) 

.998 

.904(-l) 

.368(-l) 

.456(+12) 

.104(+1) 

.573(-l) 

.133 

-.146(+17) 

-.105 

-.402(-2) 

-.23q+ 1) 

-.148(+21) 

-.778(-2) 

-.22q-3) 

-.227(-l) 

-.161(+23) 

the constants are stable over some limited range, we may not be able to adequately 
construct the wave function F,(r), even around the match point r, . For example, 
with rt = 30.0 and ~~ = 3.0, we see that the constants are stable between r, = 9.0 
and r, = 11 .O. However, if the wave function vt(r) and F?(r) are tabulated and 
compared for a few points about r,,, = 9.0, the i = 2 components disagree com- 
pletely, while the i = 1 components agree to only one significant figure. 

We have seen that the breakdown of the outward and inward integration 
procedure originates from the closed-channel growth of the solutions. In an effort 
to avoid the growth, let us consider the following procedure. As discussed in 
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TABLE VII 

For various I? with rt = 30.0, the constants b, , b, , a2 , a, are examined for various 
match points r,,, 

KYRY) 

1.0 

2.0 

3.0 

4.0 

5.0 

- 

h 
be 
aa 
a3 

r m = 5.0 

.995 

.I93 

.490(-l) 

.702(+7) 

.998 

.904(-l) 

.364(--l) 

.787(+12) 

.lw+l) 

.550(-l) 

.725(-l) 

.621(+16) 

.679(+1) 
.213 

-.143(+1) 

.506(-l-19) 

.384(+3) 

.944(+1) 

-.109(+1) 

.609(-i-W 

- 
r, = 9.0 r, = 11.0 rm = 15.0 

.995 

.193 

.49q- 1) 

.702(+7) 

.998 

.904(-l) 

.364(-l) 

.787(+12) 

.999 

.553(-l) 

.291(-l) 

.608(+16) 

.993 

.379(--l) 

.274(-l) 

.12q+20) 

.360 

.102(-l) 

.374 

.llq+23) 

.995 

.193 

.490(-l) 

.702(+7) 

.998 

.904(-l) 

.364(-l) 

.787(+12) 

.999 

.553(-l) 

.291(-l) 

.608(+16) 

.999 

.382(-l) 

.242(-l) 

.119(+20) 

.100(+0 

.282(- 1) 

.209(-l) 

.978(+22) 

.995 

.193 

.490(-l) 

.702(+7) 

998 

.904(-l) 

.364(-l) 

.787(+12) 

.999 

.553(-l) 

.29q- 1) 

.608(+16) 

.997 

.381(-l) 

.259(-l) 

.12q+20) 

.102(+1) 

.288(-l) 

.466(-2) 

.973(+22) 

- 
r, = 20.0 

.995 

.193 

.490(-l) 
.713(+7) 

.998 

.904(-l) 

.368(-l) 

.124(+13) 

.1w+o 

.573(-l) 

.133 

-.818(+16) 

-.105 

-.402(-2) 

-.23q+ 1) 
-.147(+21) 

-.778(-2) 

-.22q-3) 
-.227(-l) 
-.642(+22) 

Section IV.A, the closed channels can be dropped after setting (rotating) the 
closed-open part of the outward solution to zero with the use of an appropriate 
matrix multiplication. However, this procedure can be applied at successive 
points during the integration of Eq. (1) to prevent any closed-channel growth. 
This “rotation” procedure was previously used by Gordon [23], Secrest [24], and 
White and Hayes [25]. We apply the procedure by noticing that 

$(r) = F(r) - c (43) 

is also a solution of Eq. (1). Therefore, we can integrate Eq. (1) outwards while 
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TABLE VIII 

For various I? with rt = 35.0, the constants 6,) b, , uz , a3 are examined for various 
match points urn 

KYRY) urn = 5.0 r m = 9.0 r, = 11.0 rm = 15.0 r m = 20.0 

1.0 

2.0 

3.0 

4.0 

5.0 

b, 
ba 
4 
a3 

h 
bz 
aa 
aa 

b, 
ba 
a2 
a3 

bl 
bs 
aa 
4 

bl 
ba 
a2 
a8 

.995 

.193 

.490(-l) 

-.315(+9) 

.loo(+l) 
.928(-l) 

-.599(-l) 
--.186(+15) 

.673(+3) 

.202(+2) 

.225(+1) 

.427(+20) 

-.116(+5) 

-.325(+3) 

.449(-l) 

-.59o(f22) 

.261(+7) 

.641(+5) 

.180(-l) 
-.584(+25) 

.995 

s93 

.490(--l) 

-.315(+9) 

.998 .998 

.904(-l) .904(-l) 

.364(-l) .364(-l) 

--.133(+15) -.133(+15) 

.982 .999 

.544(-l) .553(--l) 

.368(-l) .291(-l) 

-.246(+19) -.262(+19) 

-.773 .lol(+l) 
-.283(-l) .385(-l) 

.820(-l) .549(-2) 

-.369(+21) -.135(+23) 

-.125(+4) .956 

-.354(+2) .271(-l) 

.650 .294(-l) 

.244(+27) -.138(+25) 

.995 

.193 

.490(-l) 
-.315(+9) 

.995 

.193 

.490(-l) 

-.315(+9) 

.998 

.904(-l) 

.364(-l) 

-.133(+15) 

.999 

.553(--l) 

.290(-l) 
-.262(+19) 

.997 

.381(-l) 

.259(-l) 

--.875(+22) 

.102(+1) 

.288(-l) 

.482(-2) 

-.111(+26) 

.995 

.193 

.490(-l) 

-.315(+9) 

.998 

.904(-l) 

.368(-l) 

-.132(+15) 

.lw+l) 

.573(-l) 

.133 

-.52q+18) 

-.105 
-.402(-2) 

-.23q+l) 
--.358(+24) 

-.778(-2) 

--.22q-3) 

-.227(-l) 

-.219(+26) 

rotating the solution F(r) at various points using Eq. (43). Then the outward 
solution is matched with the exterior (inward) solution at r = r, . 

In application to the present example problem, we can choose the matrix C so 
that 

* = (F 2;) W) 

at each rotation point. Using r, = 20.0 and rt = 25.0, the rotation procedure was 
tested for energies from K2 = 1.0 to K2 = 5.0. The constant a2 = R obtained using 
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this procedure agreed for all cases with the stable results given in Table VI, column 
r, = 11 .O. Therefore, we see that the rotation procedure works quite well for the 
special case where there are no exchange terms. However, when exchange terms 
are present, the exchange auxiliary equations are changed by the rotation procedure. 
Therefore, it is not apparent that the growth in the total solution can be avoided 
using the rotation procedure, when exchange terms are present. 

V. SUMMARY AND CONCLUDING REMARKS 

A discussion was given on a numerical approach to be used in electron-ion 
scattering, as well as electron-atom scattering, within the close-coupling forma- 
lism. First, we considered the use of integral equation theory for the solution of 
the coupled equations from zero out to the transformation point rt . Second, an 
open-channel projection procedure was developed to obtain the reactance matrix. 
The procedure is designed to work for either the ion or neutral case and even for 
high angular momentum. Lastly, we considered specific disadvantages of the 
numerical procedure presented here. 

In conclusion, we see that a numerical approach with outward and inward 
integration can work efficiently as long as the closed-channel wave numbers ~~~ and 
the point rt (where the inward integration is begun) are not too large. However, in 
the event that they are large, the numerical approach can yield erroneous results. 
It is apparent that we must use a numerical approach, which is stable for these 
cases, or use another formalism which avoids the use of closed channels to intro- 
duce correlation and polarization effects. 

APPENDIX I 

Let us briefly consider the evaluation of (T = arg r(Z + 1 - iZ/K). If we let 
f = I - iz/K, then CJ = arg r(l + f). According to Luke [14], we have 

n-1 

where 

n1 + f) = WI c gkffk(f), 
k=O 

n = 16, 
A(f) = (2r)l12 (f + 1 1/2y+l12 e-(f+11/2), 

&3(f) = 1, (43) 

Km = M- 1) *** cl-- k + 1) 
cf + 1)cf + 2) *.* (2 + k) ’ 

581/18/z-8 



222 ED R. SMITH 

and the coefficients g, are tabulated values. Noting that Im(ln T(l + f)) = 
arg T(l + f) = B, we obtain CT once we have evaluated F(l + f) via Eq. (43). As 
pointed out by Luke [14], for sufficiently large values of If / (for example, If j = 
lo), use of the asymptotic expansion for T(l + f) would be more efficient. In 
Abramowitz and Stegun [ll], the asymptotic expansion for Im(ln Qiy)) is given. 
With the use of the continuation formula T( 1 + f) = fT( f ), we obtain 

so that 

c = Im(ln CX) + Im(ln r(Q)). (44) 

Hence, we can obtain u using Eq. (43) if 1 f 1 < 10 and using Eq. (44) if If I > 10. 
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